๐Ÿ’— WIA Emotion AI Standard Ebook | Chapter 3 of 8


๐Ÿ’— Chapter 3: WIA Emotion AI Standard Overview

Hongik Ingan (ๅผ˜็›Šไบบ้–“)

"Benefit All Humanity"

The WIA Emotion AI Standard provides a comprehensive framework for ethical, accurate, and interoperable affective computing systems.


3.1 Standard Mission and Goals

3.1.1 Mission Statement

The WIA Emotion AI Standard aims to establish a universal, open framework for emotion recognition systems that prioritizes human wellbeing, privacy, and accuracy while enabling innovation and interoperability.

3.1.2 Core Goals

Goal Description Benefit
Interoperability Common data formats and APIs No vendor lock-in
Accuracy Minimum accuracy thresholds Reliable results
Ethics Privacy and consent requirements Responsible AI
Fairness Bias testing requirements Equitable performance
Transparency Clear documentation User understanding

3.2 Four-Phase Architecture

The WIA Emotion AI Standard is organized into four phases, each addressing a specific layer of the affective computing stack:

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                    Phase 4: Integration                      โ”‚
โ”‚    Healthcare โ”‚ Education โ”‚ Marketing โ”‚ Automotive โ”‚ XR     โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚                    Phase 3: Protocol                         โ”‚
โ”‚       WebSocket โ”‚ REST โ”‚ Real-time Streaming โ”‚ Security     โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚                    Phase 2: API Interface                    โ”‚
โ”‚    Facial โ”‚ Voice โ”‚ Text โ”‚ Biosignal โ”‚ Multimodal Fusion    โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚                    Phase 1: Data Format                      โ”‚
โ”‚     JSON Schema โ”‚ Emotions โ”‚ AU Codes โ”‚ V-A โ”‚ Metadata      โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

3.2.1 Phase 1: Emotion Data Format

3.2.2 Phase 2: API Interface

3.2.3 Phase 3: Streaming Protocol

3.2.4 Phase 4: Integration


3.3 Emotion Classification Framework

3.3.1 Discrete Emotion Model (Ekman)

The WIA Standard supports Ekman's six basic emotions plus neutral:

Emotion Label (EN) Label (KO) Emoji V-A Typical Range
Happiness happiness ํ–‰๋ณต ๐Ÿ˜Š V: 0.5~1.0, A: 0.2~0.8
Sadness sadness ์Šฌํ”” ๐Ÿ˜ข V: -0.8~-0.3, A: -0.5~0.1
Anger anger ๋ถ„๋…ธ ๐Ÿ˜  V: -0.7~-0.2, A: 0.3~0.9
Fear fear ๊ณตํฌ ๐Ÿ˜จ V: -0.7~-0.2, A: 0.4~0.9
Disgust disgust ํ˜์˜ค ๐Ÿคข V: -0.8~-0.3, A: -0.1~0.5
Surprise surprise ๋†€๋žŒ ๐Ÿ˜ฎ V: -0.2~0.5, A: 0.5~1.0
Neutral neutral ์ค‘๋ฆฝ ๐Ÿ˜ V: -0.2~0.2, A: -0.2~0.2

3.3.2 Dimensional Model (Valence-Arousal)

The WIA Standard also supports dimensional representation:

Valence-Arousal Space:
                    +1.0 (High Arousal)
                          โ”‚
                   Angry  โ”‚  Excited
                          โ”‚
    -1.0 โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ +1.0
    (Negative)            โ”‚           (Positive)
                          โ”‚
                    Sad   โ”‚  Calm
                          โ”‚
                    -1.0 (Low Arousal)

Value Ranges:
  Valence: -1.0 (most negative) to +1.0 (most positive)
  Arousal: -1.0 (low energy) to +1.0 (high energy)

3.3.3 Extended Emotion Labels

Beyond basic emotions, the standard supports extended labels for finer granularity:

Category Extended Labels
Positive High-Arousal excited, elated, enthusiastic, amused
Positive Low-Arousal content, relaxed, calm, serene
Negative High-Arousal stressed, anxious, frustrated, irritated
Negative Low-Arousal bored, tired, depressed, melancholic
Cognitive States confused, focused, interested, engaged

3.4 FACS Integration

3.4.1 Supported Action Units

The WIA Standard supports the complete FACS system with 44 Action Units:

AU Range Region Count
AU1-AU7 Upper Face (Brows, Forehead) 7 AUs
AU9-AU17 Nose and Upper Lip 8 AUs
AU18-AU28 Lower Face (Lips, Jaw) 11 AUs
AU41-AU46 Eyelids 6 AUs
AU51-AU58 Head Position 8 AUs
AU61-AU64 Eye Position 4 AUs

3.4.2 AU Intensity Encoding

Action Unit intensities are encoded on a 0-1 scale:

Intensity Mapping:
  0.0       = Not present
  0.01-0.20 = Trace (A)
  0.21-0.40 = Slight (B)
  0.41-0.60 = Marked (C)
  0.61-0.80 = Pronounced (D)
  0.81-1.00 = Maximum (E)

3.5 Supported Modalities

3.5.1 Facial Expression Analysis

Input Type Image (JPEG, PNG) or Video (H.264, VP9)
Resolution Minimum 480p, Recommended 720p+
Frame Rate Minimum 15 fps, Recommended 30 fps
Output Emotion labels, AU intensities, V-A coordinates
Latency Target < 100ms per frame

3.5.2 Voice/Speech Analysis

Input Type Audio (WAV, MP3, WebM)
Sample Rate Minimum 16kHz, Recommended 44.1kHz
Channels Mono or Stereo
Features Pitch, intensity, speech rate, voice quality, prosody
Output Emotion labels, V-A coordinates, confidence

3.5.3 Text Sentiment Analysis

Input Type UTF-8 text
Languages 100+ languages supported
Max Length 10,000 characters per request
Output Sentiment polarity, emotion labels, entity emotions
Features Sarcasm detection, aspect sentiment, intensity

3.5.4 Biosignal Analysis

Supported Signals ECG/HR, EDA/GSR, EEG, Respiration
Sample Rates HR: 1Hz+, EDA: 4Hz+, EEG: 128Hz+
Format JSON array or CSV
Output Arousal level, stress indicators, engagement

3.6 Multimodal Fusion

3.6.1 Fusion Strategies

The WIA Standard supports multiple fusion approaches:

Strategy Description Use Case
Early Fusion Combine raw features before classification When modalities are synchronized
Late Fusion Combine classification outputs When modalities are independent
Decision Fusion Voting or weighted averaging of decisions Simple, robust approach
Attention Fusion Learned weights based on context When reliability varies

3.6.2 Modality Weighting

Default weights for multimodal fusion:

Default Weights (configurable):
  Facial:    0.40 (highest reliability for discrete emotions)
  Voice:     0.25 (good for arousal detection)
  Text:      0.20 (context-dependent)
  Biosignal: 0.15 (hard to fake, but noisy)

Weights should be adjusted based on:
  - Signal quality
  - Context (e.g., voice-only call)
  - Cultural factors
  - Individual calibration

3.7 Design Principles

3.7.1 Core Principles

  1. Privacy by Design: Minimize data collection, require consent
  2. Transparency: Clear disclosure of emotion AI presence
  3. Accuracy: Minimum thresholds with demographic fairness
  4. Interoperability: Standard formats enable portability
  5. Extensibility: Support for custom emotions and modalities
  6. Cultural Sensitivity: Account for cultural differences
  7. Human Oversight: Enable human review of decisions

3.7.2 Technical Principles

  1. JSON-based: Human-readable, widely supported
  2. Semantic Versioning: Clear upgrade path
  3. REST/WebSocket: Standard web protocols
  4. Confidence Scores: Always include uncertainty
  5. Timestamps: Enable temporal analysis

3.8 Certification Levels

Level Name Requirements Use Cases
1 Compliant Follows data format, 75% accuracy Research, prototypes
2 Certified Full API compliance, 80% accuracy, bias testing Commercial products
3 Certified Plus All requirements, 85% accuracy, audited Healthcare, sensitive apps

3.9 Chapter Summary

[OK] Key Takeaways:

  1. Four Phases: Data Format โ†’ API โ†’ Protocol โ†’ Integration
  2. Dual Model: Supports both discrete (Ekman) and dimensional (V-A)
  3. FACS Support: Full 44 Action Unit encoding
  4. Four Modalities: Face, voice, text, biosignal
  5. Multimodal Fusion: Multiple strategies supported
  6. Three Certification Levels: Compliant, Certified, Certified Plus

3.10 Looking Ahead

In Chapter 4, we will dive deep into Phase 1: Emotion Data Format, covering JSON schemas, field specifications, and practical examples.


Chapter 3 Complete | Approximate pages: 14

Next: Chapter 4 - Phase 1: Emotion Data Format


WIA - World Certification Industry Association

Hongik Ingan - Benefit All Humanity

https://wiastandards.com